Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(7): 499-514, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572757

RESUMO

Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Antiporters/metabolismo , Elétrons , Simulação de Dinâmica Molecular , Oxirredução , Benzoquinonas
2.
Redox Biol ; 72: 103142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581860

RESUMO

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.

3.
J Phys Chem B ; 128(10): 2304-2316, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430110

RESUMO

Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Prótons , Aminoácidos/química , Conformação Molecular , Conformação Proteica
4.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 159-173, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372588

RESUMO

Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Humanos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Microscopia Crioeletrônica , Mitocôndrias/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1864(2): 148951, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509126

RESUMO

Respiratory complex I in mitochondria and bacteria catalyzes the transfer of electrons from NADH to quinone (Q). The free energy available from the reaction is used to pump protons and to establish a membrane proton electrochemical gradient, which drives ATP synthesis. Even though several high-resolution structures of complex I have been resolved, how Q reduction is linked with proton pumping, remains unknown. Here, microsecond long molecular dynamics (MD) simulations were performed on Yarrowia lipolytica complex I structures where Q molecules have been resolved in the ~30 Å long Q tunnel. MD simulations of several different redox/protonation states of Q reveal the coupling between the Q dynamics and the restructuring of conserved loops and ion pairs. Oxidized quinone stabilizes towards the N2 FeS cluster, a binding mode not previously described in Yarrowia lipolytica complex I structures. On the other hand, reduced (and protonated) species tend to diffuse towards the Q binding sites closer to the tunnel entrance. Mechanistic and physiological relevance of these results are discussed.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Complexo I de Transporte de Elétrons/metabolismo , Quinonas , Benzoquinonas/metabolismo
6.
Sci Adv ; 8(46): eadd3855, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383672

RESUMO

Respiratory complex I is a ~1-MDa proton pump in mitochondria. Its structure has been revealed in great detail, but the structural basis of its assembly, in humans involving at least 15 assembly factors, is essentially unknown. We determined cryo-electron microscopy structures of assembly intermediates associated with assembly factor NDUFAF1 in a yeast model system. Subunits ND2 and NDUFC2 together with assembly factors NDUFAF1 and CIA84 form the nucleation point of the NDUFAF1-dependent assembly pathway. Unexpectedly, the cardiolipin remodeling enzyme tafazzin is an integral component of this core complex. In a later intermediate, all 12 subunits of the proximal proton pump module have assembled. NDUFAF1 locks the central ND3 subunit in an assembly-competent conformation, and major rearrangements of central subunits are required for complex I maturation.

7.
Nat Commun ; 13(1): 6091, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241630

RESUMO

Multiple resistance and pH adaptation (Mrp) cation/proton antiporters are essential for growth of a variety of halophilic and alkaliphilic bacteria under stress conditions. Mrp-type antiporters are closely related to the membrane domain of respiratory complex I. We determined the structure of the Mrp antiporter from Bacillus pseudofirmus by electron cryo-microscopy at 2.2 Å resolution. The structure resolves more than 99% of the sidechains of the seven membrane subunits MrpA to MrpG plus 360 water molecules, including ~70 in putative ion translocation pathways. Molecular dynamics simulations based on the high-resolution structure revealed details of the antiport mechanism. We find that switching the position of a histidine residue between three hydrated pathways in the MrpA subunit is critical for proton transfer that drives gated trans-membrane sodium translocation. Several lines of evidence indicate that the same histidine-switch mechanism operates in respiratory complex I.


Assuntos
Antiporters , Simulação de Dinâmica Molecular , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Histidina , Concentração de Íons de Hidrogênio , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Água/metabolismo
8.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145309

RESUMO

NADH:ubiquinone oxidoreductase (respiratory complex I) is a redox-driven proton pump with a central role in mitochondrial oxidative phosphorylation. The ubiquinone reduction site of complex I is located in the matrix arm of this large protein complex and connected to the membrane via a tunnel. A variety of chemically diverse compounds are known to inhibit ubiquinone reduction by complex I. Rotenone, piericidin A, and annonaceous acetogenins are representatives of complex I inhibitors from biological sources. The structure of complex I is determined at high resolution, and inhibitor binding sites are described in detail. In this review, we summarize the state of knowledge of how natural inhibitors bind in the Q reduction site and the Q access pathway and how their inhibitory mechanisms compare with that of a synthetic anti-cancer agent.

9.
FEBS Lett ; 596(9): 1133-1146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363885

RESUMO

The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations, and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q)-binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raise interesting possibilities about the mechanism of complex I, which are discussed.


Assuntos
Complexo I de Transporte de Elétrons , Yarrowia , Sítios de Ligação , Complexo I de Transporte de Elétrons/metabolismo , Domínios Proteicos , Quinonas , Yarrowia/genética
10.
Sci Adv ; 7(46): eabj3221, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767441

RESUMO

Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.

11.
Life (Basel) ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069703

RESUMO

NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.

12.
Front Chem ; 9: 672851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996767

RESUMO

NADH: ubiquinone oxidoreductase (complex I) is the first enzyme complex of the respiratory chain. Complex I is a redox-driven proton pump that contributes to the proton motive force that drives ATP synthase. The structure of complex I has been analyzed by x-ray crystallography and electron cryo-microscopy and is now well-described. The ubiquinone (Q) reduction site of complex I is buried in the peripheral arm and a tunnel-like structure is thought to provide access for the hydrophobic substrate from the membrane. Several intermediate binding positions for Q in the tunnel were identified in molecular simulations. Structural data showed the binding of native Q molecules and short chain analogs and inhibitors in the access pathway and in the Q reduction site, respectively. We here review the current knowledge on the interaction of complex I with Q and discuss recent hypothetical models for the coupling mechanism.

13.
Nat Commun ; 11(1): 6008, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243981

RESUMO

Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (ß1-ß2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Mutagênese Sítio-Dirigida , Oxirredução , Subunidades Proteicas/genética , Prótons , Ubiquinona/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
14.
ACS Nano ; 14(8): 9972-9978, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589396

RESUMO

Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.


Assuntos
Carbono , Elétrons , Microscopia Crioeletrônica , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
15.
Curr Opin Struct Biol ; 63: 1-9, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32058886

RESUMO

Respiratory complex I is an intricate multi-subunit membrane protein with a central function in aerobic energy metabolism. During the last years, structures of mitochondrial complex I and respiratory supercomplexes were determined by cryo-EM at increasing resolution. Structural and computational studies have shed light on the dynamics of proton translocation pathways, the interaction of complex I with lipids and the unusual access pathway of ubiquinone to the active site. Recent advances in understanding complex I function include characterization of specific conformational changes that are critical for proton pumping. Cryo-EM structures of the NADH dehydrogenase-like (NDH) complex of photosynthesis and a bacterial membrane bound hydrogenase (MBH) have provided a broader perspective on the complex I superfamily.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Animais , Sítios de Ligação , Evolução Biológica , Catálise , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Água/química
16.
Biochim Biophys Acta Bioenerg ; 1861(3): 148153, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935361

RESUMO

Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Ubiquinona/química , Ubiquinona/metabolismo
17.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844670

RESUMO

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/ultraestrutura , Yarrowia/ultraestrutura , Trifosfato de Adenosina/química , Complexo I de Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Membranas Mitocondriais , Conformação Proteica , Yarrowia/genética
18.
Biochim Biophys Acta Bioenerg ; 1860(7): 573-581, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226318

RESUMO

Respiratory complex I catalyses the reduction of ubiquinone (Q) from NADH coupled to proton pumping across the inner membrane of mitochondria. The electrical charging of the inner mitochondrial membrane drives the synthesis of ATP, which is used to power biochemical reactions of the cell. The recent surge in structural data on complex I from bacteria and mitochondria have contributed to significant understanding of its molecular architecture. However, despite these accomplishments, the role of various subdomains in redox-coupled proton pumping remains entirely unclear. In this work, we have mutated conserved residues in the loop of the PSST subunit that faces the ~30 Šlong unique Q-binding tunnel of respiratory complex I. The data show a drastic decrease in Q reductase activity upon mutating several residues despite full assembly of the complex. In-silico modeling and multiple microsecond long molecular dynamics simulations of wild-type and enzyme variants with exchanges of conserved arginine residues revealed remarkable ejection of the bound Q from the site near terminal electron donor N2. Based on experiments and long-time scale molecular simulations, we identify microscopic elements that dynamically control the diffusion of Q and are central to redox-coupled proton pumping in respiratory complex I.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Mutação , Ubiquinona/metabolismo , Yarrowia/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência , Ubiquinona/química
19.
ACS Nano ; 13(6): 7185-7190, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31117383

RESUMO

In electron cryo-microscopy, structure determination of protein molecules is frequently hampered by adsorption of the particles to the support film material, typically amorphous carbon. Here, we report that pyrene derivatives with one or two polyglycerol (PG) side chains bind to the amorphous carbon films, forming a biorepulsive hydrogel layer so that the number of protein particles in the vitreous ice drastically increases. This approach could be extended by adding a hydrogel-functionalized carbon nanotube network (HyCaNet, the hydrogel again being formed from the PG-pyrene derivatives), which stabilized the protein-containing thin ice films during imaging with the electron beam. The stabilization resulted in reduced particle motion by up to 70%. These substrates were instrumental for determining the structure of a large membrane protein complex.


Assuntos
Microscopia Crioeletrônica/métodos , Hidrogéis/química , Proteínas de Membrana/química , Detergentes/química , Glicerol/química , Proteínas de Membrana/ultraestrutura , Nanotubos/química , Polímeros/química , Estabilidade Proteica , Pirenos/química , Vitrificação
20.
Nat Commun ; 9(1): 4500, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374105

RESUMO

Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Bombas de Próton/química , Ubiquinona/química , Ubiquinona/ultraestrutura , Cristalografia por Raios X , Dissulfetos , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cinética , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Bombas de Próton/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...